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0. Integrability in 2D

Yang-Baxter equation
Ri2R13R>3 = RpsRi3Ri2 € End(V®3),
where R;; acts on the jth and jth components:

R121V®V®V, R23ZV®V®V, R13ZV®V®V

1 / \ 3
>< _ >< Braid Move
Wiring diagram

o~

e Factorization of 3 particle scattering amplitude into 2 body ones
e Commutativity of row transfer matrices in lattice models

2312

Key to quantum integrability in 2D



Integrability in the presence of boundary reflections

K = < : V. — V  (reflection amplitude matrix)

Reflection equation

5 Reflection move
Wiring diagram

Ry1 KoR12K1 = K1 Ro1 KoRy» € End(V®?)
(K1=K®1, K2=1®K)

Factorization condition at the boundary



1. Tetrahedron and 3D reflection equations (3D analogue of the Yang-Baxter and reflection egs.)

Tetrahedron eq. [A.B. Zamolodchikov 80]

Ri124R135R236 Rase = Rus6R23sR135R124 on V&° Rijr € End(V @V ®V)

R = local Boltzmann weights of a vertex in 3D



1. Tetrahedron and 3D reflection equations (3D analogue of the Yang-Baxter and reflection egs.)

Tetrahedron eq. [A.B. Zamolodchikov 80]

Ri124R135R236 Rase = Rus6R23sR135R124 on V&° Rijr € End(V @V ®V)

3D reflection eq. [Isaev-Kulish 97]
Rego K 35798249 Ros8 K1478 K1236 456 = Ras56K1236 K1478 Ra58 R249 K 3579 Resg

k J

MWRVIWRIVIVIVIWVRV Kijn CEndW VoW V)

“ Three upright open books on a desk with their spines undergoing a Yang-Baxter move.”



1. Tetrahedron and 3D reflection equations (3D analogue of the Yang-Baxter and reflection egs.)

Tetrahedron eq. [A.B. Zamolodchikov 80]

Ri124R135R236 Rase = Rus6R23sR135R124 on V&° Rijr € End(V @V ®V)

3D reflection eq. [Isaev-Kulish 97]

Regg K3579R249 Ro58 K1478 K 1236 Ra56 = Ras6K 1236 K1478 R258 R249 K 3579 Resg

o
mMWRAVIWRVRAVRVIWRV QV Kiju € EndW o VoW e V)

They are compatibility conditions of the quantized Yang-Baxter eq. and quantized reflection eq.,
which are the usual Yang-Baxter and reflection equations up to conjugation.

d _ 4 o k..
° Rik KL&\LR ° \% — M/ Klbka
L R kR L

Braid move Reflection move




Now that R and K play the role of structure constants, they have to satisfy the compatibility condition
under introducing one more arrow:
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Re8o K3579 249 Ra58 K1478 K1236 Ra56 = Ras56 K 1236 K1478 R258 R249 K 3579 689
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Several interesting solutions are known for the tetrahedron equation
by Zamolodchikov, Baxter, Kapranov-Voevodsky, Bazhanov, Mangazeev, Sergeev, Stroganov, .. ..

Only a few solutions are known for the 3D reflection equation by K-Okado, Yoneyama (as of 2022).

There are quantum group theoretical approaches based on -quantized coordinate rings by
[Kapranov-Voevodsky 94] and PBW basis of U by [Sergeev 08]. -

Atsuo Kuniba

They are equivalent beyond type A [K-Okado-Yamada 13] and have been developed BT Groups i

extensively with many applications. Three-Dimensional
Integrability

The aim of this talk is to develop another approach [Sun-Yagi 22|, where these diagrams are
complemented by quivers that facilitate the efficient operation of quantum cluster algebras.

We focus on the Fock-Goncharov quivers, devise a new realization of quantum Y-variables
using g-Weyl algebras, and obtain a new solution.



2. New solution (emerging from guantum cluster algebra associated with the Fock-Goncharov quiver)

S i Nk
Rijr = U, (epitustrn pﬁ%k)pjkehpz(uk uide~h (Wk—wi)
G i+ +pr—u—2pE+A; Ui P — UL —Dj A i+ui+pi—u—2p+Ai\—1
K:ijki \Ilq2(6p3 4 TPl —U]— 2Pk j!)\:[jq(ept i TPk — Uk —Pj 1k)\:[jq2(6pj § TPI— Ul — 2Pk 31)

X .
% PJ,! 6%pi(u;—uj)6—2%‘(2uk—2ui—|—u;—uj).

1 .
(—¢X;¢%) 00

U, (X) = quantum dilogarithm (2:Q)m = (1 — 2)(1 — qz) -+ - (1 — 2™ 1)
U (q°U)T,(U)~" =1+4U,

Key properties
Y Prop U, (U)W, (W) = U, (W)¥, (¢~ UW)T,(U) if UW = WU  (pentagon identity)

di;h  otherwise for tetrahedron eq. ) [pi, p;] = [ui, u;] =0 : canonical variables

[, u;] = {25”5’ i,J €1{3,6,9} ( [pi, uj] = dijh

pi; = transposition p; <> pj, u; <> u; q= eh, )\,,;j =\ — )\j



3. Derivation from quantum cluster algebra (Fock-Goncharov(09) g-deforming Fomin-Zelevinsky(07))

Seed = (B,Y) B < @ : quiver with \lrertices
= (bij)ij=1, bij = —bji € Z/2 : Exchange matrix (Type A only) Py
Y = (Y1,...,Y,), YiY;=¢**7Y;Y;: Y-variables 0 e
F(Y) =F(B,Y) : non-commutative fraction field generated by Y bij =1/2
o -

Mutation

un(B,Y) = (B.Y') ke{l,...,n)

, {—bij ifi=Fkorj=k 2], = max(z, 0)

ij — bij + [bki]+br; + [brj]+bir  Otherwise

YI Y_l ’i, = k‘
g qb ik ki ]+Yka + H|bk il (1 4+ q—sgn(bki)(Zm—l)Yk)_Sgn(bk:z') 2% k






pr on Y is decomposed into monomial part and dilog (automorphism) part
in two (4, —) ways so that the following diagram becomes commutative:

. 22" Y—l -
Yie F(Y) F(Y) Tk,s(Yi/) — { Eb. [ebi] [ebik]+ Z (e =)
l L g ilebirl+ VY] i £k
Tuk’ . dilog part
Y/ € F(Y) —— F(Y) Mo = Ad(T4(Y5)%), L. pf (Vi) = Uo(Yi) Vil (Vi) ~°
Th,+

monomial part

Compositions of pf := Ad(¥4(YE)¢) Tk : F(Y') = F(Y) are called cluster transformations.

1 2 1 2
Example o — o0 5 o =< o bia = 1= —by1, 1Y2 = ¢°YoYi
e Ys Yi(l+qY, )=t Yy
#
_ M2, + _ _ _ _ _ _
T+ 4 VY RO E Mt ORe thl s AT R Ol EN
N\
; C1y_
Y, — uh Yi(14qY, 1)1

=z

T2, — Yi = \I’q(Yz_l)_lyl\I’q(Yz_l) = qu’q(qzyz_l)_lqjq(yz_l)



Wiring diagrams (red) and the Fock-Goncharov (FG) quivers (black): Type A,

FG quiver = dual of wiring diagram

22!
Rya3
" FG quivers are designed in such a way that
L8 v the braid move Rizs and
the mutation p4 are compatible.
Y7\ L [ Yi(l+gYs)
}/2, T. q_IYvQYEL Ad(¥,(Ya)) )/2(1 = qY;L_ )_1 . .
e | Y| = q‘lYleZl e LYl L Associated cluster transformation
Yy Yy e
e N \ Ys(l+qv)

The transformation Ri23 of the wiring diagram satisfies the tetrahedron equation (as noted earlier)

Ri24R135 Ro36 456 = Ras56 2361358124

Key idea: Upgrade it into an equality of cluster transformations



Az‘-)Ag

Wiring diagrams (red) which are
successively transformed by
braid moves denoted by R;;,

The figure shows that Ry,
satisfies the tetrahedron equation
(as noted before).

They are associated with the
FG quivers (black) which are
transformed by mutations pu,

Quantum cluster algebra ensures the equality
of the corresponding cluster transformations!

Our solution is extracted as an operator
whose adjoint induces the cluster - . - :

transformation corresponding to R;; . & s . Faswl | L



Embedding into g-Weyl algebras The g-commutativity becomes automatic in the

following parameterization using g-Weyl algebra

Introduce canonical variables:

[pi, us] = Bdsj, [pi,pj] = [wi,us] =0

(Y7,...,Y!) etPi_etvi are generators of g-Weyl algebra
with the relation ePie%i = ¢%ie%i ePs
Y! = Y’Y’
e e —el Kk.i=eMN, A=\ — \;
YY] = ¢ 1Y]Y/ (g=¢e% Kr;=e%, Aj=A—A;)
A V4 ENRWA Va b Vd |
Yy =qYY;
{8 Vg8 SeRi !/ — 9l — - —
1Y5 — Y5Y1, etc Y]. — K:z ]-BPQ u2—p1 1/1’ — ,{’3 ]-ep3 u3
Y2 — H'I2ep2+u2_p3 ‘}_/2’ — R16P1+u1

-1 — / -1 —Uo—
\ / }/t?):h”]_ epl u1 )./3:’{2 ePQ U2—p3

}/4 = Kllfiglepl‘I‘U1+p3—U3—’p2 }/;1/ — ,{1—1’{361)3+u3+p1_u1_p2
canonical commutation relations Yi = KgePstus Y! = gpeprtuap



Moreover, what is no less remarkable in the g-Weyl algebra parameterization
is that not only the dilogarithm part, but also the monomial part

B L
Y qY2Y,
Yi| ™ | ¢YsYs

Y;fl
)

is realized entirely as an adjoint as

g Ad(Ple) Pio3 = p23e%P1(u3—u2)eA—§3(u3—u1)l

Example Ad(P123)(6p3) = pPa3 g%pl(”3_u2)e%(U3—ul)€P3€—%(ug—u1)€— %pl(ﬂg—UQ)pQ?)

1 1
— o3 erPL (u3—uz)e—)\23€p38—gpl(ua—uz)pz?)

=003 e—pl—)\23€p3p23 Zopa 0 Aoy

Underlined parts are treated by the Baker-Campbell-Hausdorff formula



Therefore, the cluster transformation p; becomes totally an adjoint as

wh = Ad(¥o(Ys)) 7+ = Ad(¥,4(Yy))Ad(Pras) = Ad(V4(Ya)Pi23)

\ . >
—

R123

i 1 - 223 (44n—
R, :@q(y4)P123 :qjq(epl+u1+p3 u3 P2+)\13)p2365p1(u3 u2) o 5" (us—u1)

= R(A1, A2, A3)123

Theorem. The tetrahedron equation with spectral parameters is valid:

R( A4, As, A6)a56 R (A2, A3, A6)236 R (A1, As, As)135R (A1, A2y Ad)124
= R(A1, A2, A1)124R (A1, A3, As)135R (A2, A3, A6 ) 236 R (A4, As, X6 )as6




Outline so far

Basic observation (not so new)

Braid moves of wiring diagrams satisfy the tetrahedron equation.

First key step

Associating FG quivers to the wiring diagrams, it can be upgraded to an equality of
cluster transformations, which is a rational transformations of g-commuting Y variables.

Second key step
Embedding into the g-Weyl algebra makes the cluster transformation into the form Ad( 7%.)

( R = product of quantum dilogarithm and the monomial part.)

Some more work shows

R itself satisfies the tetrahedron equation.



Wiring diagrams (red) and the FG quivers (black) for K : Type C,

FG quivers are weighted. (2= weight 2 node, Exchange matrices are only skew-symmetrizable)

60 e o WS

A single reflection move
corresponds to the
composition of three mutations
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The transformation K,,5, of the wiring diagram induces the following cluster transformation:

s 1 13 = AA(T 2 (Vo)W (¥5) W2 (¥2) 7o 75 7,



The cluster transformation induced by K3,

/}{;:\ £ o Lo

Y, ATIASYYS
kx| }/3’ T2,+75,+7T2,— Yg Ad(‘I’q2(Y2)\I’q(Y5)‘I’q2(Y2)_1) A51Y3A1A2
2 vl ¢ lY,Ys = R Ay
Ys s Ci £ Yy Y5 A
\Y¢) \g~1Y2Y5Ys) \g~IATY2Y5Y5 )

AO =1+ (q + qg)Y5 + q4Y52(1 -+ QQYQ), A1 =1+ QY5(1 -+ quz), Az =1+ q3Y5(1 -+ QQYQ)

Our solution (appearing after 3 pages) is an operator whose adjoint induces
this rational transformation of g-commuting Y variables.



For three reflecting wires (red), there are two ways to reverse the order of reflections: Cy — C5

Ruzg | o

The corresponding transformations K and R satisfy the 3D reflection equation (as noted earlier)

R457K4689K2379R258R178K1356R124 - R124K1356R178R258K2379K4689R457‘



First key step:
Quantum cluster algebra ensures that the cluster transformations corresponding to the two sides coincide.

Second key step: Embedding of Y-variables into g-Weyl algebras

}/vl, — ’{Zlep4_u47
}/2, — ’4;4’{2_16174"‘“4"‘172 _71'2_2p37

Y] — &2_16172—?142—2171,

YY2 — /.4'12,{/4_16172—|-’1142—|-p4—u4—2pg7
Yé — Ky 6104Jru47 Yg — Ko epg—l—ug—Zpl’

G i Z’; Y. s e

Y — m1m§16p1+”1+p3_“3_p2, — Y5’ L ,{351—16p3+us+p1 —u1—p2
Yb — K3 6p3+us—p4’ }/6’ — K1 6p1+“1,

(p; and u; obey the canonical commutation relation)

The embedding makes the g-commutativity of Y; and Y;’ variables automatic.



Under this embedding, the cluster transformation for K,,;, becomes totally an adjoint as

ﬂ;ﬂ;ﬂ; = Ad(K1234)

Ki234 = K(A1, A2, A3, Ag)1234

- potus+ps—ugs—2p3+Aay P1t+ui+p3—usz—p2+Ais p2tugs+ps—ug—2p3+Aas\—1
= W (eP2 e 3+X24) (e )W 2 (e )
A
X poa e%m(m—uz)e—fﬁ (2uz—2u1+us—us2)

Theorem. The 3D reflection equation with spectral parameters Is valid:

Ra57K 46802379 Ro58R 178K 1356 R124 = R124K1356 R178Ro58K 23794680 R 457

where Rijr = R(Ai, Aj, Ak )ik and Kijnr = K(Ai, Ajy Ak, M ikt




4. Tetrahedron equality as duality

A representation of the g-Weyl algebra ePie%i = q2%ie%iePi on P Clmy,mo, m3)

mq,mo,m3E€EZ3

: . i — 2my
ePilmq, mo,m3) = |mq, Mo, M3)|m; sm;—1, € mo, m3) = ¢ Mo, M3)
- b—k k—i o(b—Fk)(i—k+1)
Matrix elements :  R¥Y¢ .= (q b c|Ryasli, , k) = ootbabre( -2 K2\*7'q
- 1= 123)t, 5, k) = 0570
1,7,k s Yy v J i+j “j+k K3 K3 (qg; q2)b—k

Substitution of this into the tetrahedron equality

Z Ry 2t (M, Aa, M) RO S5 (M, Mgy As) Rez oo (A2, Mg, A6) Revies o6 (Aas As, o)

Cg,Cg,bﬁ C4,C5,Cq
..... bgeZ
a4,as5,06 az,a3,bg a1,b3,bs b1,b2,by
Z Rb4 bs, bﬁ A4’ )\5’ Aﬁ)Rb%bS,Cﬁ ()\2’ )\35 )\B)Rbhc?ncs ()\1’ )\3’ A )Rc1 C2,C4 (Ala AZ: )\4)1
..... bgeZ

is distilled into the duality of g-series under the interchange r «+— s:

( 1)n n(n+1+2s) 1

1
2 (@%)n(q%)e-

2
(q )S_H neEZ

(_ 1)nqn(n+1—|—2r)

(@) n+r = (42)r+e Z (¢%)n(@?)t-n(q*)n+s

nez

Possible connections with dualities in supersymmetric gauge theories (see Yagi arXiv:2405.02870)



A similar duality is present also in the modular double setting,
where the quantum dilogarithm is replaced by the "non-compact” counterpart (NCQD).

By (1) = ¢ 1 / e 2tuw dw b2
— eXx — —
’ Py R4i0 Sinh(wbd) sinh(w/b) w 1=¢

The duality in that case emerges as an identity of integrals, which is also reproduced by
a NCQD analogue of a classical Heine transformation.




5. Outlook

3D R-matrix for Symmetric Butterfly (SB) quiver
(Inoue-K-Sun-Terashima-Yagi, 24)

Consists of 4 mutations.

1 @)
1
_ 2C7+uy tug+twy —wa+wz\—1 205 +uy —uz+wi —watws\—1
R - ‘Ijq (e ) qj@(e ) 1#4 IU3,5U4 8
209+42C3-2Cs+2Cg+u1 —ugz+wi —wa+ws 2C9+42C3+u+us+wi —wa+tws
X quf}(e )qth(e )v 10 10
1 1 1
P = eﬁ(?JL:J,—’14L2)1U1eﬁz\o(—?m—’~'ﬂ2+wa)eﬁ(/\1M1Jr>\2u24-)\3’113),0237

Generalizes and unifies many known solutions as
specializations of parameters in appropriate representations ot
Weyl algebras or their modular doubles.

- Kapranov-Voevodsky (94) g-oscillator representation
- Bazhanov-Mangazeev-Seregeev (09) coordinate representation
- K-Matsuike-Yoneyama (22) momentum representation

* Inoue-K-Terashima (23, this talk) specializing parameters




Captured by quantum cluster algebra for
From BC (before the cluster alg') symmetric butterfly quiver [I-K-Sun-T-Yagi 24]

to AD (after the dawn)

Fock-Goncharov quiver (this talk) is the special case where
P
Quantum cluster algebra only one of the four quantum dilogarithms &, survives.
S cover

most of the prominent solutions of the By (21)®p (22) By (23) B (22)

i (x| R|z") ~
tetrahedron equation. By (23 + 24 )
(z; = linear form of z1,...,x5)
Captured b_y quantum cluster algebra for moduar double of [K-Matsuike-Yoneyama 23]
square quiver [Inoue-K-Terashima 23]
I Fourier transform
/
@y (22— 1 - )Py (zh—) ) “vertex-IRC” duality 5(‘;,1]:;,2 5(‘:,2]:;? / d i 2 ° 7 +0,2
By (2 —a1 ) Dp (22—, ) = 1Tz T2 s Dy (z+ ‘L?L)q)b(z— b Ak 1 5>—)
“quantum 2+1 evolution model” “quantum geometry R”
[Sergeev 98, 10] [Bazhanov-Mangazeev-Sergeev 09]

N __
lq =1 qu:l

R‘;IEQZS ~ 6;2 i";,?, wpl (2’2 - Zl)wpz (-72 - .71) “vertex-IRC” duahty <n|R|n1> 5nl—|—n2 6n2+n3 qul (’n,_|_ n1—'g.3 )’u)p2 (’]’I,—'— ng—’gl)
17273 2173 A Yo — A - ~ “nl+n! - nl n’j: n ‘-
Wps (']2 Zl)wp“(m Jl) e e 3n€ZN wp3(n+ MTS)WM(”_T%)
44 : .
vertex formulation of ZBB model” “Zamolodchikov-Bazhanov-Baxter (ZBB) model”

[Sergeev-Mangazeev-Stroganov 95] ¢V = 1 [Bazhanov-Baxter 92] ¢" =1
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